
Neural networks for function approximation and
data-driven modeling

Connor Robertson

10/7/21



Context

Feedforward neural networks

Convolutional neural networks

Autoencoders

Recurrent neural networks

Hybrid differential equations with neural networks

Conclusion



Finding the form of a differential equation

Modeling is often made up of determining the form of a differential
equation for a system.

Techniques for determining the form:
I Build on physical knowledge - derivation
I Use “phenomenological” terms - functions that have expected

behavior



Data-driven modeling with PDE-Find

Today’s data-driven modeling core idea: build many possible terms
and use sparse regression to determine equation form1,2.

For data points (xi , u(xi )) where u is an unknown function,
determine time evolution:

~ut = M~c

where M is a “library” of possible terms:

M =
[
1 ~u ~u2 . . . ~ux ~u~ux . . . ~umumxxxx

]
~u =

[
u(x1) ... u(xn)

]T
1Brunton, Proctor and Kutz, “Discovering governing equations from data by

sparse identification of nonlinear dynamical systems”.
2Rudy andothers, “Data-driven discovery of partial differential equations”.



Key ideas in PDE-Find

1. Need to have all terms represented
2. Need to accurately differentiate terms
3. Need to effectively reduce library

For differentiation of noisy data, use non-local methods to average
out or correct for error – i.e. fit with a differentiable function basis

* Popular differentiable functions for fitting data right now are neural
networks!



Neural nets are functions
Main components of neural network:
1. Linear transformations (lines)
2. Nonlinear “activation” functions (circles)
3. Loss function

Usually represented as
computational graph:



Neural net example function

Linear regression: Given data (xi , u(xi ))

f (x) = Wx + b

Loss function: L(f , xi ) = ‖f (xi )− u(xi )‖22



Neural network training
Linear regression:

f (x) = Wx + b

Loss function: L(f , xi ) = ‖f (xi )− u(xi )‖22

minimize
W ,b

L(f , xi )

I Stochastic gradient descent

W = W − αdL(f , xi )
dW

dL(f , xi )

dW
= 2(f (xi )− u(xi ))

df (xi )

dW
= 2(f (xi )− u(xi ))xi



Neural networks are function compositions
Polynomial regression:

f (x) = c1

+ c2(W2x + b2)

+ c3(W3x + b3)
2

+ c4(W4x + b4)
3

Loss function: L(f , xi ) = ‖f (xi )− u(xi )‖22



Feedforward Neural networks

f (x) = W21g21(W21(g11(Wx + b) + . . .+ g15(Wx + b)) + b21 + b) + . . .

+W23g23(W (g11(Wx + b) + . . .+ g15(Wx + b)) + b) + b23



Universal approximators

Fully connected neural network with a single hidden layer containing
infinite nodes (possibly) can approximate any Borel measurable
function on a compact domain to arbitrary uniform accuracy3.

3Hornik, Stinchcombe and White, “Multilayer feedforward networks are
universal approximators”.



Neural network parameters

1. Depth: Number of layers
(compositions)

2. Width: Number of functions
in each layer (sums)

3. Activation functions:
Functions g(x)
3.1 Sigmoid: g(x) = 1

1+e−x

3.2 Tanh: g(x) = ex−e−x

ex+e−x

3.3 ReLU (rectified linear

unit): g(x) =

{
0 x < 0
x x ≥ 0



Practical advantages and disadvantages

Advantages:
I Extremely flexible - discontinuous and piecewise functions
I Memory efficient in high dimension - parameter nesting

Disadvantages:
I Nonconvex optimization - local minima
I Theory is lacking - stability, accuracy, computational cost4

I Need massive amounts of data
I More of an art than a science

4Adcock and Dexter, “The Gap between Theory and Practice in Function
Approximation with Deep Neural Networks”.



Reservoir Computing

Hard to choose depth and width, so you can randomly fix weights
with some rules to get a randomly generated nonlinear basis.

5 6

5Shi and Han, “Support Vector Echo-State Machine for Chaotic Time-Series
Prediction”.

6http://reservoir.sciml.ai/



Deep Learning PDE form

Neural networks are differentiable via the chain rule as used in the
training process.

For data (xi , u(xi )), make a function approximation network
f (x) 7→ u(x), then consider the PDE-Find system7:

~ut ≈ ~ft = M~c

where M is a “library” of possible terms:

M =
[
1 ~f ~f 2 . . . ~fx ~f ~fx . . . ~f mumxxxx

]
~u =

[
f (x1) ... f (xn)

]T
7Xu, Chang and Zhang, “DL-PDE”.



Deep learning PDE solutions

If you already know the form of your PDE, can use “Physics Informed
Neural Networks (PINNs)” to numerically compute the solution.

For PDE ut = F (x , t, u) and data (xi , tj , u(xi , tj)), create neural
network f (x , t) 7→ u(x , t) with loss function8:

‖ut(xi , tj)− F (xi , tj , f (xi , tj))‖22

* Some challenging numerical questions when differentiating PDE
loss function

8Raissi, Perdikaris and Karniadakis, “Physics-informed neural networks”.



Convolutional operators
I There is a lot of flexibility in the activation functions g(x)
I One function that revolutionized neural networks for image

processing was the convolution (discrete)
I Compile local spatial information from images

g(x)[m] =
∞∑

n=−∞
k[n]x [m − n]

where k is a discrete convolutional kernel.

9

9Jaswal, Sowmya and Soman, “Image classification using convolutional neural
networks”.



Convolutions as differentiation stencils

Discretely, local differentiation (e.g. not spectral methods) can be
represented as the application of a discrete convolutional stencil.

Centered finite difference (2D):

k =
1
2h

 0 0 0
−1 0 1
0 0 0


5-point stencil (laplacian):

k =
1
h2

0 1 0
1 −4 1
0 1 0





Differentiation in neural networks

Using Wavelet theory, you can constrain learned convolutional filters
to be derivatives of a given order and construct a PDE-Find neural
network10.

Convolutions contain the idea of dimensionality reduction.

10Long, Lu and Dong, “PDE-Net 2.0”.



Neural networks expanding dimensionality

Classic idea in machine learning for classification is to map data to
higher dimension where it is linearly separable.

11

11https://towardsdatascience.com/the-kernel-trick-c98cdbcaeb3f



Autoencoders
Can also reduce data to lower dimensionality using nonlinear
functions. (nonlinear SVD?)



Discovering dynamics on encoded data
Can we analyze dynamics on encoded data12? (AlphaFold does this!)

12Champion andothers, “Data-driven discovery of coordinates and governing
equations”.



Recurrent neural networks (RNNs)

Can reuse parameters in the network to try to incorporate
information from previous steps (useful for time series).

* Analogous to multistep Markov chains



Recurrence computational considerations

Nested evaluation of g(x , y) in RNNs causes numerical instability.
Alternative Long Short Term Memory (LSTM) form:



Residual neural network
Recurrence to account for evolution.

x t+1 = x t + g(x , y)

A forward Euler step!



Neural ODEs

Building on residual network, let’s define:

xt = g(x , y)

and use ODE solvers to evolve x13.

* Usually requires stiff solvers!

13Chen andothers, “Neural ordinary differential equations”.



Adding to known dynamics

What if we already have some idea of dynamics? Learn unknown
dynamics as part of simulation process14.

ẋ = αx − βxy
ẏ = γxy − δy

→ ẋ = αx + U1(x , y)

ẏ = −δy + U2(x , y)

* Need to simultaneously simulate and backpropogate (chain rule) -
some numerical challenges there

14Rackauckas andothers, “Universal Differential Equations for Scientific
Machine Learning”.



Conclusions

I Data-driven modeling usually needs to first fit a function to data
I Neural networks are composed functions
I Can tune composed function complexity with depth, width,

activation and loss functions
I Can reduce dimension for more concise dynamics
I Can formulate recurrent neural networks as ODEs
I Can embed neural networks in known PDEs to uncover missing

dynamics
Challenges:
I Theory - stability, accuracy, training procedure etc.
I Need a lot of data
I Need a lot of patience for the architecture



References
[1] Ben Adcock and Nick Dexter. “The Gap between Theory and Practice in Function Approximation with Deep

Neural Networks”. inSIAM Journal on Mathematics of Data Science: 3.2 (january 2021), pages 624–655.
ISSN: 2577-0187.

[2] Steven L. Brunton, Joshua L. Proctor and J. Nathan Kutz. “Discovering governing equations from data by
sparse identification of nonlinear dynamical systems”. inProceedings of the National Academy of Sciences:
113.15 (12 april 2016). Publisher: National Academy of Sciences Section: Physical Sciences,
pages 3932–3937. ISSN: 0027-8424, 1091-6490.

[3] Kathleen Champion andothers. “Data-driven discovery of coordinates and governing equations”.
inProceedings of the National Academy of Sciences: 116.45 (5 november 2019), pages 22445–22451. ISSN:
0027-8424, 1091-6490.

[4] Ricky TQ Chen andothers. “Neural ordinary differential equations”. inarXiv preprint arXiv:1806.07366:
(2018).

[5] Kurt Hornik, Maxwell B. Stinchcombe and Halbert L. White. “Multilayer feedforward networks are universal
approximators”. inNeural Networks: 2 (1989), pages 359–366.

[6] Deepika Jaswal, V Sowmya and KP Soman. “Image classification using convolutional neural networks”.
inInternational Journal of Scientific and Engineering Research: 5.6 (2014), pages 1661–1668.

[7] Zichao Long, Yiping Lu and Bin Dong. “PDE-Net 2.0: Learning PDEs from data with a numeric-symbolic
hybrid deep network”. inJournal of Computational Physics: 399 (15 december 2019), page 108925. ISSN:
0021-9991.

[8] Christopher Rackauckas andothers. “Universal Differential Equations for Scientific Machine Learning”.
inarXiv:2001.04385 [cs, math, q-bio, stat]: (6 august 2020). arXiv: 2001.04385.

[9] M. Raissi, P. Perdikaris and G. E. Karniadakis. “Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations”.
inJournal of Computational Physics: 378 (1 february 2019), pages 686–707. ISSN: 0021-9991.

[10] Samuel H. Rudy andothers. “Data-driven discovery of partial differential equations”. inScience Advances: 3.4
(1 april 2017), e1602614. ISSN: 2375-2548.

[11] Zhiwei Shi and Min Han. “Support Vector Echo-State Machine for Chaotic Time-Series Prediction”. inIEEE
Transactions on Neural Networks: 18.2 (2007), pages 359–372.

[12] Hao Xu, Haibin Chang and Dongxiao Zhang. “DL-PDE: Deep-learning based data-driven discovery of partial
differential equations from discrete and noisy data”. inarXiv:1908.04463 [physics, stat]: (12 august 2019).
arXiv: 1908.04463.

https://arxiv.org/abs/2001.04385
https://arxiv.org/abs/1908.04463

	Context
	Feedforward neural networks
	Convolutional neural networks
	Autoencoders
	Recurrent neural networks
	Hybrid differential equations with neural networks
	Conclusion
	References

