Neural networks for function approximation and data-driven modeling

Connor Robertson

10/7/21

Context

Feedforward neural networks

Convolutional neural networks

Autoencoders

Recurrent neural networks

Hybrid differential equations with neural networks

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Conclusion

Finding the form of a differential equation

Modeling is often made up of determining the form of a differential equation for a system.

Techniques for determining the form:

- Build on physical knowledge derivation
- Use "phenomenological" terms functions that have expected behavior

Data-driven modeling with PDE-Find

Today's data-driven modeling core idea: build many possible terms and use sparse regression to determine equation form^{1,2}.

For data points $(x_i, u(x_i))$ where u is an unknown function, determine time evolution:

 $\vec{u}_t = M\vec{c}$

where M is a "library" of possible terms:

 $M = \begin{bmatrix} 1 & \vec{u} & \vec{u}^2 & \dots & \vec{u}_x & \vec{u}\vec{u}_x & \dots & \vec{u}^m u_{xxxx}^m \end{bmatrix}$ $\vec{u} = \begin{bmatrix} u(x_1) & \dots & u(x_n) \end{bmatrix}^T$

¹Brunton, Proctor **and** Kutz, "Discovering governing equations from data by sparse identification of nonlinear dynamical systems".

²Rudy andothers, "Data-driven discovery of partial differential equations". 🛓 🔊 < 📀

Key ideas in PDE-Find

- 1. Need to have all terms represented
- 2. Need to accurately differentiate terms
- 3. Need to effectively reduce library

For differentiation of noisy data, use non-local methods to average out or correct for error - i.e. fit with a differentiable function basis

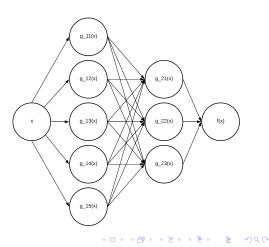
* Popular differentiable functions for fitting data right now are *neural networks*!

Neural nets are functions

Main components of neural network:

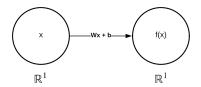
- 1. Linear transformations (lines)
- 2. Nonlinear "activation" functions (circles)
- 3. Loss function

Usually represented as computational graph:



Neural net example function

Linear regression: Given data $(x_i, u(x_i))$



f(x) = Wx + b

Loss function: $L(f, x_i) = ||f(x_i) - u(x_i)||_2^2$

Neural network training

Linear regression:

$$f(x) = Wx + b$$

Loss function: $L(f, x_i) = ||f(x_i) - u(x_i)||_2^2$

$$\min_{\substack{W,b}} L(f, x_i)$$

Stochastic gradient descent

$$W = W - \alpha \frac{dL(f, x_i)}{dW}$$
$$\frac{dL(f, x_i)}{dW} = 2(f(x_i) - u(x_i))\frac{df(x_i)}{dW}$$
$$= 2(f(x_i) - u(x_i))x_i$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

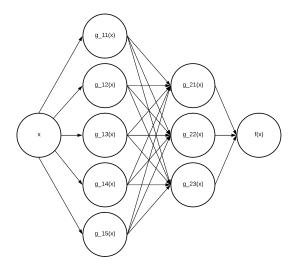
Neural networks are function compositions

Polynomial regression:

$$f(x) = c_1$$

+ $c_2(W_2x + b_2)$
+ $c_3(W_3x + b_3)^2$
+ $c_4(W_4x + b_4)^3$
Loss function: $L(f, x_i) = ||f(x_i) - u(x_i)||_2^2$

Feedforward Neural networks



 $f(x) = W_{21}g_{21}(W_{21}(g_{11}(Wx+b)+\ldots+g_{15}(Wx+b))+b_{21}+b)+\ldots + W_{23}g_{23}(W(g_{11}(Wx+b)+\ldots+g_{15}(Wx+b))+b)+b_{23})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Fully connected neural network with a single hidden layer containing infinite nodes (possibly) can approximate any Borel measurable function on a compact domain to arbitrary uniform accuracy³.

Neural network parameters

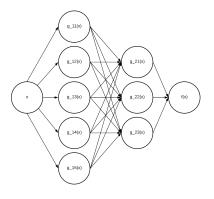
- 1. **Depth:** Number of layers (compositions)
- 2. Width: Number of functions in each layer (sums)
- 3. Activation functions: Functions g(x)

3.1 Sigmoid:
$$g(x) = \frac{1}{1+e^{-x}}$$

3.2 Tanh:
$$g(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

3.3 ReLU (rectified linear

unit):
$$g(x) = \begin{cases} 0 & x < 0 \\ x & x \ge 0 \end{cases}$$



◆□> ◆□> ◆三> ◆三> ● 三○ ○ ○ ○

Practical advantages and disadvantages

Advantages:

- Extremely flexible discontinuous and piecewise functions
- Memory efficient in high dimension parameter nesting

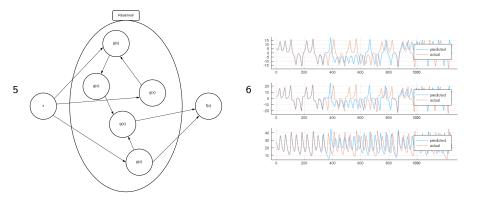
Disadvantages:

- Nonconvex optimization local minima
- Theory is lacking stability, accuracy, computational cost⁴
- Need massive amounts of data
- More of an art than a science

⁴Adcock **and** Dexter, "The Gap between Theory and Practice in Function Approximation with Deep Neural Networks".

Reservoir Computing

Hard to choose depth and width, so you can randomly fix weights with some rules to get a randomly generated nonlinear basis.



⁵Shi and Han, "Support Vector Echo-State Machine for Chaotic Time-Series Prediction".

⁶http://reservoir.sciml.ai/

Deep Learning PDE form

Neural networks are differentiable via the chain rule as used in the training process.

For data $(x_i, u(x_i))$, make a function approximation network $f(x) \mapsto u(x)$, then consider the PDE-Find system⁷:

$$\vec{u}_t \approx \vec{f}_t = M\vec{c}$$

where M is a "library" of possible terms:

$$M = \begin{bmatrix} 1 & \vec{f} & \vec{f}^2 & \dots & \vec{f}_x & \vec{f} & \vec{f}_x & \dots & \vec{f}^m u_{xxxx}^m \end{bmatrix}$$
$$\vec{u} = \begin{bmatrix} f(x_1) & \dots & f(x_n) \end{bmatrix}^T$$

⁷Xu, Chang and Zhang, "DL-PDE".

Deep learning PDE solutions

If you already know the form of your PDE, can use "Physics Informed Neural Networks (PINNs)" to numerically compute the solution.

For PDE $u_t = F(x, t, u)$ and data $(x_i, t_j, u(x_i, t_j))$, create neural network $f(x, t) \mapsto u(x, t)$ with loss function⁸:

$$||u_t(x_i, t_j) - F(x_i, t_j, f(x_i, t_j))||_2^2$$

* Some challenging numerical questions when differentiating PDE loss function

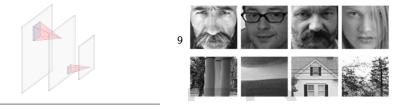
⁸Raissi, Perdikaris and Karniadakis, "Physics-informed neural networks". 🚊 🗠 🤉

Convolutional operators

- There is a lot of flexibility in the activation functions g(x)
- One function that revolutionized neural networks for image processing was the convolution (discrete)
- Compile local spatial information from images

$$g(x)[m] = \sum_{n=-\infty}^{\infty} k[n]x[m-n]$$

where k is a discrete convolutional kernel.



⁹Jaswal, Sowmya **and** Soman, "Image classification using convolutional neural networks".

Convolutions as differentiation stencils

Discretely, local differentiation (e.g. not spectral methods) can be represented as the application of a discrete convolutional stencil.

Centered finite difference (2D):

$$k = \frac{1}{2h} \begin{bmatrix} 0 & 0 & 0\\ -1 & 0 & 1\\ 0 & 0 & 0 \end{bmatrix}$$

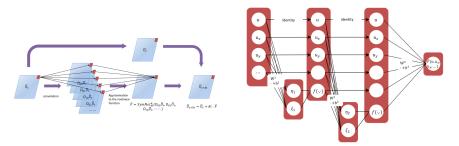
5-point stencil (laplacian):

$$k = \frac{1}{h^2} \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Differentiation in neural networks

Using Wavelet theory, you can constrain learned convolutional filters to be derivatives of a given order and construct a PDE-Find neural network 10 .

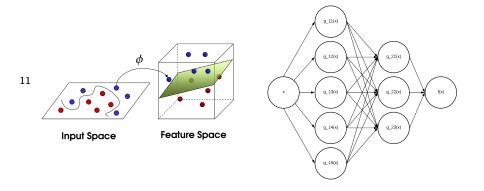


Convolutions contain the idea of dimensionality reduction.

```
<sup>10</sup>Long, Lu and Dong, "PDE-Net 2.0".
```

Neural networks expanding dimensionality

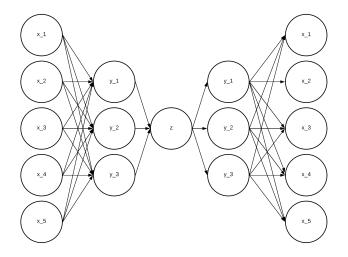
Classic idea in machine learning for classification is to map data to higher dimension where it is linearly separable.



 $^{11} https://towardsdatascience.com/the-kernel-trick-c98cdbcaeb3f \rightarrow \texttt{CD} \rightarrow$

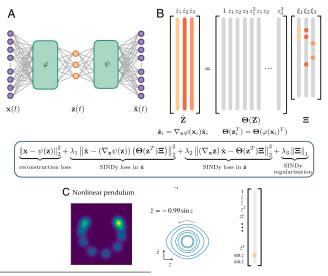
Autoencoders

Can also reduce data to lower dimensionality using **nonlinear** functions. (nonlinear SVD?)



Discovering dynamics on encoded data

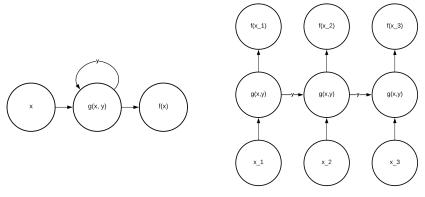
Can we analyze dynamics on encoded data¹²? (AlphaFold does this!)



¹²Champion **andothers**, "Data-driven discovery of coordinates and governing equations". $\langle \Box \rangle \langle \Box$

Recurrent neural networks (RNNs)

Can reuse parameters in the network to try to incorporate information from previous steps (useful for time series).

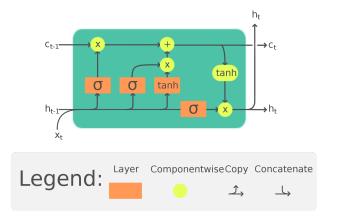


◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

* Analogous to multistep Markov chains

Recurrence computational considerations

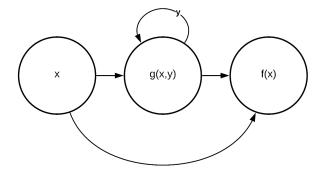
Nested evaluation of g(x, y) in RNNs causes numerical instability. Alternative Long Short Term Memory (LSTM) form:



▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

Residual neural network

Recurrence to account for evolution.



$$x^{t+1} = x^t + g(x, y)$$

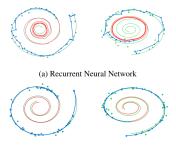
A forward Euler step!

Neural ODEs

Building on residual network, let's define:

$$x_t = g(x, y)$$

and use ODE solvers to evolve x^{13} .



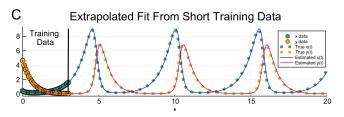
(b) Latent Neural Ordinary Differential Equation

* Usually requires stiff solvers!

Adding to known dynamics

What if we already have some idea of dynamics? Learn unknown dynamics as part of simulation $process^{14}$.

$$\dot{x} = \alpha x - \beta x y \qquad \rightarrow \qquad \dot{x} = \alpha x + U_1(x, y) \dot{y} = \gamma x y - \delta y \qquad \qquad \dot{y} = -\delta y + U_2(x, y)$$



* Need to simultaneously simulate and backpropogate (chain rule) - some numerical challenges there

Conclusions

- Data-driven modeling usually needs to first fit a function to data
- Neural networks are composed functions
- Can tune composed function complexity with depth, width, activation and loss functions
- Can reduce dimension for more concise dynamics
- Can formulate recurrent neural networks as ODEs
- Can embed neural networks in known PDEs to uncover missing dynamics

Challenges:

- Theory stability, accuracy, training procedure etc.
- Need a lot of data
- Need a lot of patience for the architecture

References

- Ben Adcock and Nick Dexter. "The Gap between Theory and Practice in Function Approximation with Deep Neural Networks". in SIAM Journal on Mathematics of Data Science: 3.2 (january 2021), pages 624–655. ISSN: 2577-0187.
- [2] Steven L. Brunton, Joshua L. Proctor and J. Nathan Kutz. "Discovering governing equations from data by sparse identification of nonlinear dynamical systems". in *Proceedings of the National Academy of Sciences*: 113.15 (12 april 2016). Publisher: National Academy of Sciences Section: Physical Sciences, pages 3932–3937. ISSN: 0027-8424, 1091-6490.
- Kathleen Champion andothers. "Data-driven discovery of coordinates and governing equations". in Proceedings of the National Academy of Sciences: 116.45 (5 november 2019), pages 22445–22451. ISSN: 0027-8424, 1091-6490.
- [4] Ricky TQ Chen andothers. "Neural ordinary differential equations". inarXiv preprint arXiv:1806.07366: (2018).
- [5] Kurt Hornik, Maxwell B. Stinchcombe and Halbert L. White. "Multilayer feedforward networks are universal approximators". in *Neural Networks*: 2 (1989), pages 359–366.
- [6] Deepika Jaswal, V Sowmya and KP Soman. "Image classification using convolutional neural networks". in International Journal of Scientific and Engineering Research: 5.6 (2014), pages 1661–1668.
- Zichao Long, Yiping Lu and Bin Dong. "PDE-Net 2.0: Learning PDEs from data with a numeric-symbolic hybrid deep network". in *Journal of Computational Physics*: 399 (15 december 2019), page 108925. ISSN: 0021-9991.
- [8] Christopher Rackauckas andothers. "Universal Differential Equations for Scientific Machine Learning". inarXiv:2001.04385 [cs, math, q-bio, stat]: (6 august 2020). arXiv: 2001.04385.
- [9] M. Raissi, P. Perdikaris and G. E. Karniadakis. "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations". in *Journal of Computational Physics*. 378 (1 february 2019), pages 686–707. ISSN: 0021-9991.
- [10] Samuel H. Rudy andothers. "Data-driven discovery of partial differential equations". in Science Advances: 3.4 (1 april 2017), e1602614. ISSN: 2375-2548.
- Zhiwei Shi and Min Han. "Support Vector Echo-State Machine for Chaotic Time-Series Prediction". in IEEE Transactions on Neural Networks: 18.2 (2007), pages 359–372.
- [12] Hao Xu, Haibin Chang and Dongxiao Zhang. "DL-PDE: Deep-learning based data-driven discovery of partial differential equations from discrete and noisy data". inarXiv:1908.04463 [physics, stat]: (12 august 2019). arXiv: 1908.04463.